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Figure 1:We introduce CameraReady, a mobile and cross-platform posture guidance system.We use CameraReady to evaluate
the influence of (a) five different display types and (b) three visualizations on user performance.

ABSTRACT
Computer-supported posture guidance is used in sports, dance
training, expression of art with movements, and learning gestures
for interaction. At present, the influence of display types and visual-
izations have not been investigated in the literature. These factors
are important as they directly impact perception and cognitive
load, and hence influence the performance of participants. In this
paper, we conducted a controlled experiment with 20 participants
to compare the use of five display types with different screen sizes:
smartphones, tablets, desktop monitors, TVs, and large displays. On
each device, we compared three common visualizations for posture
guidance: skeletons, silhouettes, and 3d body models. To conduct
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our assessment, we developed a mobile and cross-platform system
that only requires a single camera. Our results show that compared
to a smartphone display, larger displays show a lower error (12%).
Regarding the choice of visualization, participants rated 3D body
models as significantly more usable in comparison to a skeleton
visualization.
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1 INTRODUCTION
Traditionally, users learn newmovements by following instructions
of an experienced coach. While this approach has proven to be
effective [31], it depends on the availability of the coach and the
user at the same time and place, and is limited by the attention
span of coach/user and high costs. Moreover, during the recent
pandemic’s time, traditional training with a coach becomes even
more unlikely.

Recent advances in sensing and actuation technologies have led
to the development of a wide-range of posture guidance applica-
tions [1, 3, 15, 17, 19, 21, 25, 35, 39, 42] to alleviate the limitations
of the traditional approach. Sports training [16, 38], physiother-
apy [35], martial arts [18], dance training [8, 29] and interacting
with user interfaces [40] have been supported by digital posture
guidance.

Smartphones and tablets carry sensors that can be leveraged,
e.g., to adjust user balance [14]. While research has investigated
mobile sensors for input [14, 37], it remains unclear if the visual
output of such devices that is limited (e.g., small display size) is
suitable for posture guidance. Desktop monitors and television
sets have been shown to be useful, but commodity devices do not
offer the sensing capabilities required. Immersive displays can be
used to visualize movements in first and third person perspectives.
However, transferringmovements learned fromVR to the real world
is limited [26].

In this work, we assess the influence of display types and visu-
alizations on user performance. To this end, we present a mobile
system with a simple setup that works cross-platform. We used our
system to conduct a controlled experiment in a lab environment
with 20 participants, where we used five displays (smartphones,
tablet, desktop monitor, TV, and large display) commonly found
on the consumer market and three visualizations (skeletons, sil-
houettes, and 3D body models) commonly found in the literature.
As part of our results, we identified that posture guidance is more
accurate and more usable using larger displays and that 3D body
models are more usable in comparison to a skeleton visualization.

In summary, the contributions of this paper are two-fold:

• A mobile, cross-platform system for posture guidance. This
system, called CameraReady, enables scientific research on
posture guidance across a wide variety of devices. We con-
tribute this system as an open source framework to accelerate
future research in that domain.

• A controlled experiment to evaluate the influence of display
types and visualizations on user performance. The findings
show that larger displays lead to higher user accuracy in
comparison to a smartphone and have higher usability scores.
Furthermore, the use of a 3D body model as visualization
leads to higher usability scores compared to a skeleton visu-
alization.

2 RELATEDWORK
This work relates to motion guidance, display types, visualiza-
tions, and motion capture systems. In the following, we discuss
approaches for motion guidance and their limitations, the various
displays and visualizations currently used, as well as systems used
for motion capture.

2.1 Motion Guidance
A large body of research exists on supporting users while learning
newmovements [1, 17, 19, 25, 35]. Use-cases range from physiother-
apy [35], sports [16, 18, 38] and dance training [8, 29] to learning
gestures for interaction [6, 32, 40]. In the traditional setting, users
are supported by a coach. This enhances the learning experience
by targeting these factors: (1) observational practice, (2) the user’s
focus of attention, (3) feedback and self-controlled practice [31].
However, due to the limitations of the traditional approach, such
as requiring the presence of both coach and user, high costs for the
users, limited attention span of coach (worsened in a group learn-
ing scenario), approaches have been proposed to overcome these
problems. Recordings of training sessions help users learn new
movements at home, but suffer from a lack of control over feedback
and the user’s focus of attention. Combining sensing technology for
input and visual displays for output has the potential to overcome
these issues by providing adequate feedback and guiding the user’s
attention appropriately. In this work, we assess the influence of
display types and visualizations on posture guidance applications.

2.2 Display Types
This work investigates the effect of display type on posture guid-
ance. Among the most common display types found on the con-
sumer market are (1) smartphones, (2) tablets, (3) desktop monitors,
(4) TVs and (5) large displays. In the following we discuss work
done on posture guidance using these devices.

Smartphones. At present, little or no work is available that utilizes
capabilities of modern smartphones for posture guidance. Research
projects use the smartphones built-in accelerometer and gyroscope
sensors, in combination with audio instructions to help users adjust
their posture [14, 37]. This helps, for instance, for rehabilitation
by improving balance of users and hence their stance. Products
on the market use smartphones synchronously with wearable sen-
sors for ergonomics, e.g. UPRIGHT GO 1. Very little research has
been done on using visual input and output capabilities currently
present in modern smartphones. Start-ups, such as Onyx 2, use the
smartphone’s camera to aid users in their training by providing
statistics on simple exercises, but offer no digital guidance. In this
research we use the RGB camera of the smartphone for tracking the
user’s posture. More advanced camera options like depth-cameras
are being introduced in some smartphones, but are not yet widely
available.

Tablets. Similar to smartphones, tablets carry accelerometers and
gyroscope sensors that can be used to help users with exercises,
e.g. Plankpad 3. However, tablets cannot be stored in pockets. This
limits their use in applications, such as balance improvement [14]
or improvement of golf swings [37]. On the other hand, tablets offer
a larger screen size that can be used to help users during full-body
posture guidance.

Desktop Monitors. Platforms such as YouTube 4 have made work-
out routines accessible on all types of displays, e.g. POPSUGAR

1https://www.uprightpose.com
2https://www.onyx.fit/
3https://plankpad.com/
4https://www.youtube.com/
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Table 1: Overview of posture guidance approaches using skeletons , silhouettes and avatars for visualizations; life-sized
displays , such as public displays and immersive displays, and desktopmonitors for output; and depth sensors , wearable
sensors , camera-based and marker-based motion capture for input.

Fitness 5. They are often watched on desktop monitors, due to their
larger size compared to mobile devices. While using this approach
has little or no hurdles for many users (a desktop monitor and an
internet connection), video content lacks on user feedback, which is
crucial while learning to perform newmovements correctly. Most of
today’s desktop monitors can be easily extended with a webcam for
input, which enables the posture tracking applications envisioned
in this paper.

Television Sets. TV sets are suitable for full-body workouts at home
due to their large screen sizes. Similar to desktop monitors, ap-
proaches that use a TV for posture guidance, e.g using video feed
of a trainer, lack on user feedback. Research has, therefore, intro-
duced approaches that overcome this limitation, e.g. for physiother-
apy [35].

Wall-sized & Immersive Displays. As a consequence of the high
potential impact of posture guidance on many of applications, a
lot of research has been done looking into interaction techniques
with public displays, virtual and augmented environments. Public
displays help users learn gestures for interaction [40]. VR and AR
enable posture guidance using both first and third person perspec-
tives [17, 19]. Currently, transferring movements learned in VR to
the real world [26], as well as the use of different visualizations is
not well understood.

Current approaches for posture guidance are designed for use in a
particular setupwith one type of display. Althoughmost approaches
target full-body posture guidance, some approaches, e.g. [17], aim at
guiding only limb movements. With CameraReady, we introduce a
cross-platform system for multiple display sizes that offers full-body
posture guidance, is self-contained, mobile and person independent.

2.3 Visualizations
In the following, visualizations commonly found in the literature
are discussed. An overview of the visualizations and related work
can be seen in Figure 2 and Table 1, respectively.

5https://www.youtube.com/channel/UCBINFWq52ShSgUFEoynfSwg

a b c

Figure 2: Visualizations used for posture guidance: (a) skele-
ton, (b) silhouette and (c) 3D body model.

Skeletons. A skeleton visualizations offers a simple, abstract repre-
sentation of the joints in the human body. Joints are connected by
abstract representations of bones. By using this body representa-
tion, details of body composition and deformation are lost. These
can serve as additional indicators for depth information, which
is important when using a 2D screen to display a 3D body pos-
ture. On the other hand, by abstracting away information a user
could perceive a body posture faster. An overview of research using
skeletons as a visualization for posture guidance can be found in
Table 1.

Silhouettes. A silhouette visualization shows the outline of the hu-
man body. Information about joint locations, body composition and
deformation are not displayed. This might make perceiving depth
information even more challenging in comparison to a skeleton
visualization. Examples of research using silhouettes can be seen
in Table 1.

3D Body Models. A 3D body model offers the most detailed rep-
resentation of the human body among the mentioned categories.
This visualization can be very realistic, e.g. by matching body com-
position [28] and deformation [30] during motion, or less realistic,
e.g., by using a virtual avatar Barioni et al. [5]. It is unclear how the
differences between these visualizations influence posture guidance
applications.
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2.4 Motion Capture
Approaches for motion sensing can be categorized into (1) marker-
based, (2) markerless, and (3) wearable sensors. Next, advantages
and disadvantages of these categories are discussed.

Marker-based. Marker-based approaches rely on the use of retro-
reflective markers and a set of high speed cameras for precise
motion capture. Marker-based systems are affected by occlusion,
not mobile and require the user to wear markers. Optitrack 6 and
Vicon 7 offer marker-based motion capture systems.

Markerless . Classically, human posture estimation using camera
images has been accomplished by feature engineering and extrac-
tion from images [15]. More recently, approaches using deep neural
networks have been introduced to overcome some of the problems
of hand-crafted features used by, e.g. depth cameras. Camera-based
methods, however, are affected by occlusion, are computationally
demanding and in cases where a more complex setup, e.g., The
Captury 8 is required, mobility is reduced.

Wearable Sensors. Using wearable sensors, human posture estima-
tion free from occlusion problems can be achieved [3, 21, 39, 42].
These systems are also usually highly mobile, but suffer from prob-
lems such as drift when using inertial measurement units (IMU)
and require users to wear bulky equipment. An example provider
of motion capture systems with wearable sensors is Xsens 9.

2.5 Summary
A multitude of display types are available to support the develop-
ment of posture guidance applications. Hurdles that stop the use of
ubiquitous smartphones include the small screen size and limited
computation power. However, little research has investigated the
use of these devices for this purpose. Desktop monitors and TV
sets have been used previously, but are limited in their sensing
capabilities. Immersive displays, in particular, VR environments
are limited in their capacity to teach users new movements that
are transferable to the real world [26]. Common to all displays, the
influence of the visualization used is not well understood.

3 CAMERAREADY
In the following, we describe our mobile cross-platform system for
posture guidance on various display types. The system is motivated
by three example application scenarios, which we use to elicit five
design requirements. Afterwards, we discuss our implementation,
the neural network we use for pose estimation, and evaluate the
accuracy of this approach.

3.1 Example Application Scenarios
We present a set of example application scenarios that show the
utility of CameraReady for motion guidance.

3.1.1 Remote Motion Coaching. One of the major disadvantages
of traditional coaching is the necessity of physical presence. With
CameraReady a coach can remotely teach users in real-time with

6https://optitrack.com/
7https://www.vicon.com/
8https://thecaptury.com
9https://www.xsens.com/

the possibility of offering feedback (Figure 3a). In comparison to a
pre-recorded video feed of the coach, this approach allows active
support during the learning process. This also makes it possible to
make use of algorithms for automatic classification of errors [23].

3.1.2 Computer-supported Mobile Training. In addition to real-
time support by a coach, CameraReady can use automated algo-
rithms to support users in practicing new and previously learned
movements in the comfort of their homes and outside (Figure 3b).
This can be used for example while practicing Yoga for showing
correct postures and highlighting errors in the user’s posture. In
comparison to remote motion coaching, the focus here is not on
supporting a 2-way communication channel between a coach and
a user, but on supporting mobile training scenarios without neces-
sarily requiring a coach.

3.1.3 Ergonomics. While interacting with displays, ergonomics is
a very important factor [2]. CameraReady can augment the display
with information on incorrect postures and guide users in perform-
ing necessary adjustments to prevent short- and long-term injuries
(Figure 3c).

3.2 Design Requirements
Based on our example application scenarios we extracted the fol-
lowing five design requirements for our system:

3.2.1 Full-Body Guidance. Most movements in sports, martial arts,
and dance require movements of the full body. Hence, our system
needs to give guidance for full-body postures. In addition, some
modes could be supported for specialized training of a specific body
part by ignoring movement of the other body parts.

3.2.2 Cross-platform. Many people own or have access to a wide
variety of digital devices, including smartphones, tablets, notebooks,
and TVs, which can be used for computer-supportedmobile training.
The system should work on a large variety of these devices to allow
the user to chose his/her preferred training setup. For sensing,
the system should require no special equipment, such as optical
tracking systems or depth cameras. Instead, the system should
work with a single-camera setup, which is already included in most
commercial devices.

3.2.3 Self-Contained. The system should consist of a single device
and not require a complex setup, especially in mobile training sce-
narios. Moreover, it should avoid attachment of wearable sensors
on the user, since the additional weight might change the body per-
ception and could make some movements more difficult to execute
and learn.

3.2.4 Mobile. The posture guidance system should be mobile to
allow for assistance in many environments, e.g. outside in a park or
in a fitness center. Hence, the system should work on smaller-sized
displays and should be able to work battery operated.

3.2.5 Person Independent. In some of our envisioned setups the
device might be shared by multiple people. For example, a televi-
sion might be used by all members of a family and an ergonomics
trainer for a machine could support factory workers. Hence, the sys-
tem should not be personalized to a specific user. This also allows
multiple users to share the same system. For example, a in-person
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Figure 3: Example application scenarios of CameraReady.

training could use the system to show the specifics of a posture,
before asking the student to imitate the movement.

3.3 Implementation
Our implementation of CameraReady consists of two parts. First, a
client application running on Android or Windows 10, and second,
a server application running on Windows 10. Client applications
were responsible for sending the camera feed to the server for evalu-
ation and displaying the visualizations. We used Unity distribution
2019.3.15f1 for compatibility between client-server applications.
Unity Neural Networking Package Barracuda 10 was used for run-
ning the neural network, uTextureSendReceive 11 for handling
camera feed and Unity Mirror Networking 12 for synchronisation
of variables, game object positions and network messages. We open-
source CameraReady to accelerate future research in the area of
visual posture guidance on Github 13.

3.4 Neural Network Evaluation
We used a neural network implemented by Yukihiko Aoyagi 14
for real-time (up to 60 fps) pose estimation. This approach uses
MobileNetV3 [20]. We chose this network over OpenPose [7] as
it detects human postures in 3D without requiring a setup with
multiple cameras. We further conducted an evaluation of the per-
formance of this network on 3D joint angle error. To do so, the
postures used during the experiment were performedwhile wearing
retro-reflective markers and being tracked by an Optitrack V100:R2

10https://docs.unity3d.com/Packages/com.unity.barracuda@0.3/manual/index.html
11https://github.com/BarakChamo/uTextureSendReceive
12https://mirror-networking.com/
13https://gitlab.com/ph-industries/CameraReady
14https://github.com/digital-standard/ThreeDPoseTracker

motion capture system. Additionally, the devices used during the
experiment captured images of the postures. A total of 60 postures
and images were collected: 20 per smartphone, tablet, and webcam.
Estimation of the neural network was compared to ground truth
data collected from Optitrack. Figure 4a shows the setup and Fig-
ure 4b-d show the results of our evaluation. The neural network
had an average error of 5.57° over all joints, postures and devices
used making it comparable to a Microsoft Kinect [36].

4 EXPERIMENT
We conducted a controlled lab experiment to investigate the influ-
ence of different visualizations and display types on the accuracy,
efficiency and usability of posture guidance. In particular, we aim
to answer the following hypotheses:

H1 Larger displays lead to higher user accuracy.
H2 Larger displays lead to lower task completion time (TCT).
H3 Larger displays lead to higher usability ratings.
H4 Visualizations with a higher level of detail lead to higher

user accuracy.
H5 Visualizations with a higher level of detail lead to lower TCT.
H6 Visualizations with a higher level of detail lead to higher

usability ratings.

4.1 Participants
We recruited 20 participants (13 Male, 5 Female, 1 Diverse and 1
participant did not specify) aged between 21 and 43 years (M = 25.25,
SD = 5.30). 15 participants are practicing or had prior experience
with posture training exercises. Participation in our experiment
was voluntary and no compensation was offered. There were some
sweets in the lab, if participants wanted to have some.
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Figure 4: (a) Setup used in our neural network evaluation, (b) 3D angle errors across devices, (c) 3D angle errors per posture,
and (d) 3D angle errors for devices and postures combined.

4.2 Design
We used a within-subject design with display type (smartphone,
tablet, desktop monitor, TV, and large display) and visualization
type (skeletons, silhouettes and 3D body models) as independent
variables. We counterbalanced the order of display type and visu-
alization type using a 5x10 and a 3x6 balanced Latin square. Dis-
plays were shown in the order determined by the 5x10 balanced
Latin square. Within each display condition, the order of visual-
izations was taken from the 3x6 Latin balanced square. Remaining
visualization combinations were transferred to the next display
condition. By using this approach, we conducted the experiment
with 20 participants instead of 30. For each combination of levels
of independent variables, participants performed 20 postures from
a baseline dataset [12] in randomized order. Figure 5 shows the
postures. This resulted in a total of 300 postures per participant.

4.3 Procedure
To prevent the spread of COVID-19, all materials used in the ex-
periment were disinfected and the lab was aired for a minimum of
30 minutes between participants. After welcoming and obtaining
informed consent from our participants, we collected their demo-
graphic data. Then, we explained the task and provided a brief
overview of the procedure. The task was to stand at a particular
location looking at a display and imitate the visible posture. After
each condition, participants filled out a System Usability Scale (SUS)
questionnaire. Finally, participants filled out a questionnaire asking
for their favorite display type and visualization and their reasoning.
The questionnaire also asked for feedback and comments on the
overall experience and suggestions for improving the system.

4.4 Apparatus
We used a Zotac Magnus EN1060K all-in-one computer with an
NVIDIA GeForce GTX 1060 graphics card while running our exper-
iment. During the experiment participants had to signal that they
are ready to start, and confirm that they performed the required
posture. Interactions of the participants with the system were per-
formed by pressing any button on a Logitech Presenter R400. We
used five commonly available devices to represent the five display
types:

• Smartphone: Google Pixel 3 with a 5.5" screen (2,280 x 1,080).
We used the ultra wide front camera with a focal length of
2.03mm (2448 x 3264). The phone was placed 1.20m away
from the participant. This distance was determined from

pilot tests as the distance where a 1.80m tall person is fully
visible with limbs stretched.

• Tablet: Microsoft Surface Pro 4 with a 12.3" screen (2,736
x 1,824). We used the built-in Intel AVStream 2500 camera
(2560 x 1440) with a x0.62 wide lens to increase field of view.
Participants stood 2.0m away from the tablet, in order to be
fully visible.

• Desktop monitor : HP 24" display (1920 x 1080) and a Logitech
QuickCam Pro 9000 (1600 x 1200) with a 3.7mm focal length.
3.5m distance was required between participants and the
webcam.

• TV : We used a NEC Multisync UN551VS 55" display (1920 x
1080) for the TV condition, and a Logitech QuickCam Pro
9000 was used for input.

• Large display: We used two NECMultisync UN551VS 72" ver-
tically stacked for the large display condition and a Logitech
Quickcam Pro 9000 was used for input.

4.5 Data Analysis
We analyzed the recorded data using a two-way repeated measures
ANOVAwith display type and visualization type as the two indepen-
dent factors. We tested the data for normality with Shapiro Wilk’s
test and found no significant deviations. Where Mauchly’s test in-
dicates a violation of the assumption of sphericity, we corrected
the tests using the Greenhouse-Geisser method and report the ϵ .
When significant effects are revealed, we use Bonferroni corrected
pairwise t-tests for post-hoc analysis.

5 RESULTS
This section details on the results of varying our independent vari-
ables display type and visualization type on the dependent variables
error, Task Completion Time (TCT), and SUS scores.

5.1 Error
We analysed the average 3D joint angle error of participants after
imitating postures. A 2-way repeated measures ANOVA showed a
significant main effect of visualization (F1.75,31.52 = 3.94, p < .05, ϵ =
0.88 , η2 = 0.005) and display (F1.58,28.44 = 5.26, p < .05, ϵ = 0.40 , η2
= 0.10). Post-hoc tests revealed no significant differences between
skeletons (M = 22.18°, SE = 4.26°), silhouettes (M = 22.25°, SE = 4.47°)
and 3D body models (M = 21.73°, SE = 4.22°); while confirming
significant differences between smartphone (M = 24.06°, SE = 3.91°)
and desktop monitors (M = 21.05°, SE = 4.54°, p < .01), TVs (M =
21.22°, SE = 4.49°, p < .05) and large displays (M = 21.07°, SE = 3.88°,
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Figure 5: Postures used in our experiment.
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Figure 6: Error, TCT, and SUS scores of users across visualizations and displays used. Error bars are the standard errors.

p < .01). We found no interaction effects between visualization and
display (F3.00,53.92 = 2.62, p > .05).

5.2 Task Completion Time (TCT)
We measured TCT as the time participants took to transition from
a neutral to the displayed posture. A 2-way repeated measures
ANOVA showed no significant main effects for both visualization
(F2,36 = 1.42 , p > 0.05) and display (F4,72 = 0.60, p > 0.05). Partic-
ipants were on average quicker with skeletons (M = 4.00s, SE =
1.96s), than silhouettes (M = 4.10s, SE = 2.05s) and 3D body models
(M = 4.18s, SE = 2.22s). The desktop monitor display had the lowest
TCT on average (M = 3.90s, SE = 2.28s), followed by smartphone
(M = 4.03s, SE = 1.71s), tablet (M = 4.06s, SE = 2.56s), TV (M = 4.13s,
SE = 1.85s), and large displays (M = 4.35s, SE = 1.87s).

5.3 System Usability Scale (SUS)
After each condition, we assessed usability of our system by asking
participants to fill out a SUS. A SUS score ranges from 0 - 100, with
higher scores showing higher usability. We found significant main
effects for visualization (F1.48,16.33 = 5.37, p < .05, ϵ = 0.74 , η2 = 0.06)
and display (F1.55,17.10 = 6.41, p < .05, ϵ = 0.39 , η2 = 0.164) on
SUS scores. Post-hoc tests showed a significant difference between
skeletons (M = 79.16, SE = 15.91) and 3D body models (M = 85.15,
SE = 10.19, p < .05). Usability of smartphone (M = 74.43, SE =
17.44) compared to tablet (M = 82.21, SE = 10.21, p < .05), TV
(M = 85.19, SE = 12.66, p < 0.01), and large display (M = 88.32, SE =
10.94, p < 0.001) was also significant. No interaction effects between
visualization and display (F3.25,35.80 = 2.57, p > .05) were found.

5.4 User Feedback
In the final questionnaire, we asked participants which visualiza-
tions and displays they found most appealing and collected com-
ments on additional features from our users.

5.4.1 Preferences & Perceptions. A 3D body model was favoured
by 40% of our participants as they found posture to be "easy to rec-
ognize" (P12), "clearer in comparison to other visualizations" (P5),
and "most visible" (P10). 30% of the participants preferred skeletons
as they "covered the least of my body and allowed me to estimate
how I was positioned" (P1), had a "good mixture between trans-
parency and overlay" (P3) and other visualizations had "a different
shoulder position" (P2). Remaining participants preferred silhou-
ettes as they were "most visible" (P16) and offered the "easiest (way)
to see what to do" (P11). Large displays were the favorite display
type by 90% of our users as they "made the recognition of the dis-
played poses effortless" (P1), were "similar to an expert showing
you an exercise" (P3), and offered an improvement in comparison
to other displays "the smaller the screen size the harder to read the
pose" (P15). The remaining 10% of our users preferred the use of
TV as it was "very pleasant to use" (P13).

5.4.2 Suggested Features. In the end, we asked participants if they
would like to see additional features in a posture guidance. Partici-
pants suggested a "color-coded avatar to show how well which joint
imitates the shown pose" (P1) and using colors to clarify in the skele-
ton visualization "if joints are in front or behind other joints" (P2). One
participant suggested a "transparency function to see your own pose
better" (P3). The participants also expressed a need for "a display
of the progress" (P13). The progress could be used as a "verification
that the pose is well done" (P6) and "to see how many positions are
still remaining [to increase motivation]" (P5). Participants further
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suggested combining progress indication with "visuo-auditory feed-
back to show that you have taken the right posture" (P5). Participants
proposed multi-view visualisations since "poses that use depth are
difficult to imitate" (P14). For example, "a second display that shows
the pose from the side" (P14) might be useful. Moreover, participants
suggested "animations how to get to a certain pose" (P20). Lastly, par-
ticipants suggested the use of a female avatar "for a better alignment
of posture" (P5).

6 DISCUSSION
In this section, we discuss quantitative and qualitative results of our
experiment. In general, our results show the feasibility of posture
guidance using all displays and visualizations presented in this
paper. We observed significant differences in usability scores and
user accuracy across devices and visualizations. In addition to our
quantitative results, users expressed clear preferences to larger
devices.

6.1 Display Types
We found that larger devices were rated as more usable by partic-
ipants. Therefore we can accept H3. Regarding accuracy of imi-
tating postures, larger devices such as desktop monitors, TVs, and
large displays showed lower errors in comparison to a smartphone
(12.51%, 11.80% and 12.43%, respectively). These results supportH1
when comparing a smartphone to other devices. However, when
comparing tablet, desktop monitor, TV and large display we cannot
support H1. Contrary to our hypothesis, smartphones can be used
for full body posture guidance. Although lower than large displays,
smartphones received a SUS score of 74 and had comparable TCT.
TCT was comparable across all displays, hence we cannot support
H2.

6.2 Visualizations
Considering the influence of visualization on posture guidance, we
found no significant differences that show superiority of a particu-
lar visualization. Our initial hypothesis (H4) was that more detailed
visualizations lead to lower error, which was not reflected in our
quantitative results but was mentioned by our participants. Depth
information (i.e., how body parts are relatively arranged) was not
clear to participants when using skeletons and silhouettes. More-
over, SUS scores showed 3D body models to be more usable than
skeletons, hence we can accept H6. Regarding TCT, all visualiza-
tions had comparable performance. Therefore, we cannot support
H5.

6.3 Subjective Preferences
In line with related work, users expressed the need for multi-view
visualizations [35], color coding of misaligned body parts [19], and
audio instructions [1]. Participants further commented on useful
features, e.g., addition of transparency of the visualization to make a
person’s own posture more visible, color coding depth information,
and animating the visualization to see the motion required.

7 LIMITATIONS
We are confident that our result provide valuable insights into the
influence of different visualizations and display types on the accu-
racy and efficiency of posture guidance systems. However, design
as well as the results of our experiment impose some limitations
and starting points for future work.

7.1 Real-World Applicability
In this paper, we investigated the accuracy, efficiency and usability
of posture guidance systems in a lab setting.We chose this approach
to focus on the mere influence of the factors and to exclude external
influences. While we are convinced that our results make a strong
contribution to the future of such systems, we also acknowledge
that other settings might yield other results. Therefore, further
work is necessary to understand how these results are transferable
to in-the-wild settings.

7.2 Real-Time Feedback
CameraReady uses various visualizations for posture guidance. This
guidance is currently limited to static postures that communicate
the target posture to the user. Future work should, therefore, inves-
tigate the addition of live feedback to further support the user, as
well as animations that make the transition between postures more
intuitive.

7.3 Recognition Accuracy
Lastly, we used a neural network for mocap. This approach is not
as precise as a marker-based system, however opens the door to a
variety of interesting application scenarios in HCI. We are confident
that this limitation will will be solved by advances in the area of
computer vision.

8 CONCLUSION
We presented CameraReady, a mobile system with a simple setup
that works cross-platform. We have assessed the feasibility of our
system in a controlled lab experiment, using different visualizations
found in the literature and various displays found on the consumer
market. Our results indicate that CameraReady can be used for
posture guidance across different screen sizes and visualizations.
While larger displays and a 3D body model visualization show
highest usability scores, other devices and visualizations also proved
to be usable in terms of our participants’ SUS scores and accuracy.
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