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Figure 1: We evaluate the sensing efficiency of 3D-printed electrodes for measuring Electrodermal Activity (EDA). We propose
six different electrode sizes and shapes (A) and compare them to a commercially available EDA sensor in a user study (B).

ABSTRACT
Electrodermal activity (EDA) reflects changes in skin conductance,
which are closely tied to human psychophysiological states. For ex-
ample, EDA sensors can assess stress, cognitive workload, arousal,
or other measures tied to the sympathetic nervous system for inter-
active human-centered applications. Yet, current limitations involve
the complex attachment and proper skin contact with EDA sensors.
This paper explores the concept of 3D printing electrodes for EDA
measurements, integrating sensors into arbitrary 3D-printed ob-
jects, alleviating the need for complex assembly and attachment.
We examine the adaptation of conventional EDA circuits for 3D-
printed electrodes, assessing different electrode shapes and their
impact on the sensing accuracy. A user study (N=6) revealed that
3D-printed electrodes can measure EDA with similar accuracy,
suggesting larger contact areas for improved precision. We derive
design implications to facilitate the integration of EDA sensors
into 3D-printed devices to foster diverse integration into everyday
objects for prototyping physiological interfaces.
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1 INTRODUCTION
Electrodermal Activity (EDA) sensors play an important role in mea-
suring skin sweat, offering valuable insights into the psychophysio-
logical states of users, such as stress [5, 41] or mental workload [20].
The sympathetic nervous system [14] dynamically adjusts sweat
secretion in response to psychological conditions, allowing the
inference of a user’s mental state [19, 42]. For instance, a sudden
loud noise rapidly increases skin sweat, activating a “fight-or-flight”
response [14]. EDA sensors detect such changes by applying elec-
trodes with small voltages to the skin (i.e., typically on the fin-
gers [4]) and assessing its resistance, which decreases with higher
sweat conductivity. Sensing EDA has interested the HCI commu-
nity to implicitly assess user states, such as mental workload [20],
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stress [21], or emotions [38]. Such measures can be used as implicit
metrics for assessing user experience [19] or providing adaptive
user interfaces [8]. Yet, the practical integration of EDA into user
interfaces remains a challenge. While commercial devices are af-
fordable, they require attaching electrodes to the user (i.e., to the
fingers or feet), hindering the comfort and user acceptance of using
EDA in interfaces. While previous work showed that electrodes
could be integrated into common skin contact points, such as VR
controllers [7], such integrations are lavishly and only cover spe-
cific use cases, demanding a more flexible approach to sense EDA
in everyday interaction scenarios. In addition, depending on where
such electrodes are integrated into a 3D object, they will also have
different shapes, possibly changing their sensing characteristics.

This paper, therefore, explores the feasibility of 3D printing
EDA sensors (3DA) to overcome these challenges and embed them
seamlessly into everyday objects. To this end, we evaluate the
suitability of differently shaped 3D-printed conductive electrodes
for measuring EDA (see Figure 1). We contribute a user study that
compares the measured values for different electrode shapes with
commercially available EDA sensors for six participants performing
an auditory oddball task. Our results show that specific shapes
achieve a solid correlation with the commercial EDA sensor, while
other shapes show a low correlation. Based on the results, we
discuss the effects of electrode shapes and materials on accuracy
and conclude with design suggestions for integrating physiological
EDA sensing into 3D-printed objects.

2 RELATEDWORK
Our work is rooted in sensing and using EDA for interactive ap-
plications. We, therefore, summarize related works in 3D-printed
physiological sensors and using EDA for interactive applications.

2.1 Sensing Electrodermal Activity
The terminology and framework presented in Boucsein’s work [6]
constitute the foundation of EDA measurements. Boucsein’s work
summarizes how EDA works and offers detailed insights into var-
ious EDA applications. The methodology aligns with the recom-
mendations proposed by Fowles et al. [12] and the subsequent 2012
report from the Society for Psychophysiological Research Ad Hoc
Committee on Electrodermal Measures [11]. These guidelines in-
form our approach to measuring EDA and interpreting the resulting
data in this research. In this context, recent EDA research has been
dedicated to developing recording devices suitable for unobtrusive
and ambulatory use outside traditional laboratory and medical set-
tings [1, 9, 28, 29, 32]. These studies focus on creating EDA sensors
with minimal hardware requirements, often utilizing small sensor
chips. An emphasis is placed on affordability, enabling long-term
measurements, and maintaining a certain measurement quality.
Many works focus on wearable devices, such as wristbands and
smartwatches, with considerations for alternative recording sites
to enhance user comfort and acceptability [15].

2.2 3D-Printed Physiological Sensors
Extensive research has been conducted and continues in 3D-printed
sensor structures. Xu et al. [44] conducted a comprehensive re-
view, encompassing recent examples of sensors measuring physical

variables such as temperature and pressure, interactive tactile and
strain sensors, and physiological sensors, including EEG sensors.
Furthermore, Dijkschoorn et al. have provided a detailed overview
of techniques employed in the 3D printing sensor structures [10].
For example, 3D-printed sensors can provide touch detection on
customized objects [23, 24, 33, 34].

3D-printed EDA sensors were rarely the objective of past re-
search. Zhao et al. [45] demonstrated the feasibility of creating
a fully printed EDA sensor chip using graphene ink for wrist at-
tachment. However, this comes with challenges such as material
specificity and shape limitations, utilizing a rectangular electrode
shape of 16 mm2. Ho et al. focused on 3D printing electrodes, uti-
lizing high-resolution powder bed printing for flexible, conductive
structures in wearable sensors [13]. They created interconnected
porous structures using sugar grains as powder, requiring coat-
ing and optional conductive material filling. While their approach
showed promising results for various physiological sensors, in-
cluding EDA, it involves intricate steps. Further investigations are
necessary, especially using FDM printing for easy integration into
arbitrary objects.

Numerous studies investigate 3D-printed electrodes, yet they
typically fall into two categories: those that generally analyze
3D-printed electrodes for electrochemical sensing, utilizing meth-
ods such as Fused Deposition Modeling (FDM) and electrodeposi-
tion [16, 30], and those that concentrate on specific sensors, employ-
ing techniques such as FDM [43] or PolyJet printing [31]. Alsharif
et al. recently reviewed 3D-printed electrodes, specifically those
not reliant on electrolytic gels [2]. When applying electrodes for
EDA, insights from conventional EDA electrodes, primarily silver
chloride electrodes, can be employed. Studies on these electrodes
highlight the correlation between the size of the contact area and
measured skin conductance. Mahon and Iacono [22] observed a
linear increase in the Skin Conductance Level (SCL) and Skin Con-
ductance Response (SCR) amplitudes with a larger contact area.
Thus, the electrode shape influences the sensing quality.

2.3 Using Electrodermal Activity for Interactive
Applications

Previous HCI studies investigated EDA for interactive applications.
For instance, Pan et al. [26] proposed utilizing orienting responses
as an “implicit communication paradigm,” employing SCRs to in-
dicate interruptions during audio stream consumption. Kosch et
al. [19] demonstrated the utility of EDA as a measure for adaptive
augmented reality production assistance systems. Shi et al. [37] ex-
amined EDA as a cognitive load indicator in traffic control manage-
ment tasks, correlating higher SCLs with increased task complexity.
Klarkowski et al. [18] explored the relationship between challenges
in video games and EDA to enhance player experience. Further-
more, EDA is frequently passively recorded for subsequent analysis.
Ayzenberg et al. [3] developed a system to implicitly log users’ stress
levels during daily social interactions on mobile phones, aiming to
aid users in recalling and managing stressful situations. Addition-
ally, EDA is employed to capture emotional states, as demonstrated
by Kim et al. [17], who designed glasses equipped with an EDA
sensor to track emotions during story reading. However, with the
emerging number of applications for interactive EDA, it becomes
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increasingly important to ensure scientifically correct EDA mea-
sures. Babaei et al. [4] summarized previous research for interactive
EDA, stated critique regarding their sensing approach, and pro-
vided directions on how the HCI community should assess EDA
measures in the future.

Previous research showed that EDA can be used for interactive
applications. Yet, integrating EDA electrodes into everyday objects
remains a research challenge. Inspired by earlier work looking
at EDA electrode shapes [22], this work, therefore, assesses the
measurement performance of customizable 3D-printed electrodes.

3 EFFICIENCY OF 3D-PRINTED ELECTRODE
SHAPE ON EDA MEASUREMENTS

We compare the EDA sensing performance of 3D-printed and com-
mercially available EDA electrodes. We manipulate the electrode
shape of the 3D-printed electrodes.

3.1 Study Setup
To evaluate the impact of electrode shape on measurement out-
comes, we utilized 3D printing to create a diverse set of six elec-
trode pairs (see Figure 1). We printed flat circular electrodes since
most commercially available electrodes are typically circular. Ad-
ditionally, we produced electrodes with a larger diameter (large
circular) to investigate the influence of electrode area. To explore
the use of non-flat, sloped electrodes, we printed four additional
pairs, including a pair with a spherical shape (dome). Two electrodes
were conical with flattened tips and varying heights, creating one
pair with a more pointed configuration than the other. The final
sloped electrodes were not curved outward but inward (inset), pro-
viding the added benefit of guiding fingers intuitively to the correct
location. The electrodes were printed using Protopasta Conduc-
tive PLA1, a composite material of PLA and carbon black, with a
conductivity of up to 3.3 S/m (approximately 30 Ω/cm).

As a reference, we use the commercially available nickel dry
Grove EDA electrodes by Seeed Technology2, which are circular
and 15 mm in diameter. Therefore, all 3D-printed electrodes, except
the large circular ones, were printed with the same diameter. The
electrodes were 3D-printed using an Original Prusa i3 MK3S printer
with Multi Material Upgrade 2S (MMU2S), and the layer height was
set to 0.2mmwith 100% infill density using the rectilinear fill pattern
from PrusaSlicer. All pipes printed of conductive filament had a
cross-section of 4 mm× 4 mm and a length of 32.5 mm, extending
from the outer end of the electrode to the center point of the board,
where a lead was inserted into a cylinder printed on top of the pipes
by heating the lead with a soldering iron.

To evaluate the performance of 3D-printed EDA sensors, it is
also necessary to adapt existing EDA sensor circuits for compatibil-
ity with 3D-printed electrodes. More advanced signal processing
tasks such as amplification and filtering can be optionally added
as supplementary hardware components or executed through soft-
ware. We intentionally focus on exosomatic recording using Direct
Current (DC) [6] since it is most suitable for seamlessly integrat-
ing an EDA sensor into small objects. This approach eliminates
the need for a reference electrode at a remote location and avoids
1https://proto-pasta.com/pages/conductive-pla – last accessed 2024-03-20
2https://wiki.seeedstudio.com/Grove-GSR_Sensor – last accessed 2024-03-20

the handling of Alternate Current (AC), for example, by using a
DC-to-AC converter.

3.2 Method
We utilized an oddball task, where brief tones are repeatedly pre-
sented audibly to the participant, with certain tones having differ-
ent frequencies, referred to as oddballs [40] and initially utilized in
neuroscience research to elicit a P300, an event-related potential
detected by electroencephalography in response to perceiving an
oddball stimulus [27]. This task has been observed to also induce
SCRs concurrently with the P300 known from neuroscience [25, 39].
Thus, the oddball task is well-suited for eliciting SCRs. It is impor-
tant to note that they should be treated separately from assessing
implicit EDA, denoting variations in skin conductance that are
not intentionally provoked by a stimulus. The study employs a
within-subjects design.

3.2.1 Independent Variables. As a single independent variable, We
investigate six electrode shapes: conic, tall conic, circular, large cir-
cular, dome, inset (see Figure 1). We compare these to the Seeed
Grove EDA electrode measurements during the oddball task.

3.2.2 Dependent Variables. Wemeasure the skin conductance from
the 3D-printed and commercially available Grove EDA electrodes
using Siemens, a standard measure for electrical conductance. The
conductance of the 3D-printed and Grove electrodes was measured
simultaneously, and the sampling rate was synchronized between
both sensors.

3.3 Procedure & Task
The study involved six individuals (three identified as females and
three as males). These volunteers were between 20 and 24 years old,
with a mean age of 22 (SD = 1.3). Two participants reported con-
suming caffeine within the six hours preceding their involvement.
The environmental conditions during the study were maintained
at an average temperature of 21.4 ◦C (SD = 1.3) and an average
humidity of 45.4% (SD = 2.8%). We complied with the recommenda-
tions by Babaei et al. [4] for conducting EDA studies. Upon arrival,
participants were instructed to wash their hands with cold wa-
ter. Subsequently, they sat at a table where the sensor and test
electrodes were positioned. Detailed information about the study
procedure and data collection was provided to them. Following
the explanation, participants signed their informed consent. They
were directed to attach the Grove reference electrodes to the mid-
dle phalanges of the ring and middle finger of the participant’s
non-dominant hand.

The electrode connected to the positive potential of the twin
EDA sensor was affixed to the middle phalanx of the middle finger.
In contrast, the other electrode was attached to the middle phalanx
of the ring finger. No electrolyte gel was used, as its application
cannot be assumed for the specific type of EDA sensors under in-
vestigation in ambulatory settings. Participants were in contact
with the electrodes for at least five minutes before the experiment
started. Subsequently, the EDA recording was conducted iteratively
with each pair of the six test electrodes. The procedure involved
the participant placing the distal phalanx of their middle finger
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on the first printed test electrode connected to the positive poten-
tial of the twin EDA sensor. Simultaneously, the distal phalanx of
the index finger was placed on the second corresponding printed
electrode on the other board. A relaxation task was conducted as a
baseline, during which participants were instructed to relax for a
few minutes while the EDA recording commenced. The task was
completed, and the recording stopped when the EDA curves of the
two electrode pairs had approached a mutually consistent linear
trend or a stable value, according to visual assessment. Then, the
participants engaged in a breathing task, where they were told
to take a fast, deep breath, hold it for a second, and breathe out
calmly. This procedure was repeated a second time, and the record-
ing was stopped four to six seconds later. Then, the participant
was asked to take a finger-sized button provided on the table with
their dominant hand, which was not attached to any electrodes.
The participant was instructed that an audio track would be played
on which tones of two different pitches would be heard. The track
would start with deep tones; whenever a high tone appeared, the
participant was asked to press the button as fast as possible. In later
iterations, the participant was reminded to press the button as soon
as possible after the tone to increase their attention. The track was
the same for all iterations and contained three tones of the higher
pitch occurring after 13.5, 21.0, and 34.5 seconds. The low tone was
a 1000 Hz tone, while the oddballs were 1500 Hz tones, all with a
duration of 80 ms occurring at an interval of 1500 ms. EDA was
recorded during all conditions. The electrodes were switched after
each condition. The task was completed for all participants, and
the entire procedure took approximately 60 minutes per individual.

3.4 Data Processing
We plotted the curves of all participants for all electrode pairs and
all tasks after applying a Butterworth lowpass filter with a 0.5 Hz
cutoff frequency. We chose this frequency to filter out as much
noise as possible while still maintaining SCRs, which have a mean
ascent time slightly more significant than two seconds [6]. Hence,
a cutoff frequency of 0.5 Hz should preserve these changes. Besides,
we divided the curves by their mean before plotting to map them all
in a comparable range while keeping their variance. For the oddball
task, we marked the times of occurring oddballs with vertical lines
(see Figure 2).

We used cvxEDA to split the EDA curves into phasic and tonic
components for visual inspection only. cvxEDA takes a parameter
called alpha, a “penalization for the sparse SMNA (sudomotor nerve
activity) driver”3, which controls howmany deflections in the curve
are classified as SCRs. We set this parameter to 0.16 as this value
seemed to achieve the best results for the curves in our plots. All
other parameters were set to their default value. Since cvxEDA
does not require any data preparation before its execution, we
did not apply a lowpass filter for this step. However, following the
developer’s suggestion, we performed standard score normalization
beforehand. We included the raw, normalized curves in translucent
colors. We also used the NeuroKit2 library4 to separate phasic and
tonic components from the EDA data measured during the oddball
task. NeuroKit2 also detects SCR onsets and peaks, which we will

3https://github.com/lciti/cvxEDA – last accessed 2024-03-20
4https://github.com/neuropsychology/NeuroKit – last accessed 2024-03-20

use to analyze the oddball task further. We again used a lowpass
filter with a 0.5 Hz cutoff frequency to plot this data. We divided the
curves by their mean before passing themeasurements to NeuroKit2
to obtain comparable results. The determined phasic components
were additionally standard score normalized before plotting for
better comparability.We calculated the Pearson correlation between
the commercial and 3D-printed electrodes.

3.5 Results
3.5.1 General Observations. We observed that the initial skin con-
ductance values measured by all printed test electrodes were high
and exhibited a decreasing trend in the first 20-30 seconds, follow-
ing a decaying curve. Beyond 30-40 seconds, the Protopasta test
electrode curves appeared to align with the corresponding refer-
ence curves, as evidenced by simultaneous peaks in both. In the
context of the breathing task, we frequently identified two promi-
nent peaks in the reference curves, consistent with expectations
after each breath. Additional higher-frequency fluctuations accom-
panied these peaks. In many cases, the Protopasta curves mirror
these major peaks. The oddball task curves displayed increased
fluctuations, with peaks often appearing seconds after the marked
oddball times, aligning with our anticipated orienting responses.
These peaks were also evident in the first differences plots, although
with more fluctuations (see Figure 2).

3.5.2 Correlation Between 3D-Printed and Commercial Electrodes.
Table 1 summarizes the results of the Pearson correlation between
the six different 3D-printed electrode shapes and the Grove EDA
electrodes (see Figure 1). We use the Pearson correlation to obtain
a similarity metric between the SCL of both signals. Large circular
electrodes exhibited the highest correlation values for these metrics.
Pearson’s r, utilized to measure the resemblance of the test electrode
curves to the reference curves, reached its peak with large circular
electrodes (0.397 for breathing and 0.683 for the oddball task). The
conic and dome electrodes achieved high r-values in the breathing
task, while circular and tall conic electrodes secured high r-values in
the oddball task. All 3D-printed electrodes yielded positive r-values
in both tasks.

3.5.3 EDA Classification. We quantify how many of the detected
SCRs were correct (i.e., precision), how many SCRs that occurred
were detected (i.e., recall), and calculate the F1 using precision
and recall. Table 2 summarizes the findings. Following the com-
putation of the mean across a broad spectrum of frequencies, all
electrodes demonstrated similar precision. However, notable dis-
tinctions emerged in recall values: tall conic electrodes exhibited
significantly high recall (0.903). Subsequently, large circular and
inset electrodes recorded the following highest recall values. Large

Table 1: Pearson correlations between the different electrode
shapes and the commercial EDA sensor. Bold values indicate
the highest correlations.

Electrode Circular Large Circular Dome Conic Tall Conic Inset

Pearson’s r .651 .683 .279 .331 .680 .597
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circular electrodes also attained the highest F1 score (0.608). Circu-
lar and dome electrodes registered the lowest F1 score. Observations
regarding latency revealed that the smaller conic and dome elec-
trode SCRs exhibited the most prolonged latency, while circular
seemed to capture SCRs earlier than the reference electrodes. Re-
garding SCR amplitudes, tall conic electrodes measured the largest,
while circular electrodes measured the lowest. After normalizing
curves by their means, all test electrodes measured larger SCRs
than the reference electrodes on average over all measured SCRs.

4 DISCUSSION
We have proposed a method to incorporate EDA sensors into 3D-
printed objects. Our focus in this research has been on employing
simple measurement techniques, specifically the quasi-constant
current and voltage methods, as well as the constant current and
voltage method using DC. Two primary reasons guided our choice
of these methods. Firstly, they are likely to be seamlessly integrated
into devices with limited space requirements, such as most mobile
devices. Secondly, these methods provide a foundation for further
development. Our approach involved using circuits to measure the
output voltage with a microcontroller. Alternatively, analog signal
processing could be implemented in hardware, as Zhao et al. [45]
demonstrated, who employed binary signal classification. Similar
to our study, more specialized data preparation circuitry could be
added, where we incorporated amplification, such as segregating
into phasic and tonic components. Examining sensor designs and
conducting studies should be considered a proof of concept, offer-
ing a starting point for future investigations into integrating EDA
sensors into 3D prints or for practical hands-on projects.

We propose the following recommendations regarding selecting
electrode shapes based on our results: It is advisable to utilize elec-
trodes with a more extensive skin contact area to achieve improved
accuracy for SCRs. A flat-shaped electrode is recommended when
low contact resistances are a priority. A pointed shape may be em-
ployed if the objective is to attain heightened sensitivity. In cases
where robustness is critical, particularly in applications where EDA
recording may be susceptible to motion interference, electrodes
with an inwardly curved shape prove advantageous because they
yield stable results with reasonably high accuracy and provide a
secure grip due to their geometry. Additionally, it is essential to
consider sufficient time for polarization [4]. Despite the challenges
we encountered during our research, we envision that future con-
ductive materials will improve their conductivity. At the same time,

Table 2: We measure the accuracy of identified SCRs by as-
sessing precision, which indicates the proportion of correct
detections. We also evaluate recall, which signifies the pro-
portion of actual SCRs that were successfully detected. The
F1 score, derived from precision and recall, is then calculated.
Bold values indicate the highest classification values.

Electrode Circular Large Circular Dome Conic Tall Conic Inset

Precision .430 .437 .393 .414 .378 .385
Recall .475 .735 .561 .594 .903 .696
F1 Score .415 .608 .420 .483 .505 .481
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Figure 2: Exemplarily plot between the Grove EDA electrodes
and the large circular 3D-printed electrodes with the highest
correlation, averaged across all participants. The curves were
divided by their mean and filtered with a low-pass filter at a
cutoff frequency of 0.5 Hz. The vertical black lines indicate
the times of the oddball stimulus.

existing 3D printing fabrication pipelines [35] will consider the
option of tracking EDA in their algorithms.

5 CONCLUSION AND FUTUREWORK
This paper investigates the application of 3D-printed electrodes
for measuring Electrodermal Activity (EDA) and assesses how elec-
trode shape impacts measurement accuracy. In a user study with six
participants, we tested six 3D-printed electrodes with a conductive
filament compared to commercially available off-the-shelf nickel
electrodes. The results show that printed electrodes maintain EDA
measurement accuracy, with the best performance from electrodes
with a flat shape and a large diameter. The findings suggest potential
applications in everyday objects such as tools, devices, cups, steer-
ing wheels, and wristbands, facilitating ambulatory EDA recording
without cables or adhesive electrodes. The paper’s contribution
paves the way for integrating EDA sensors into various everyday
objects through 3D printing, enabling broader accessibility and
application of EDA for interaction [7] or biofeedback [36]. Our
work suggests future research directions with larger participant
pools, including exploring other materials for printed electrodes
to improve the accuracy, optimizing algorithm parameters for spe-
cific electrode shapes, testing its robustness against artifacts (e.g.,
motion), the influence of long-term use, and designing systems
utilizing EDA as an input modality for arousal or stress.
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